Ricinoleic acid inhibits methanogenesis and fatty acid biohydrogenation in ruminal digesta from sheep and in bacterial cultures.
نویسندگان
چکیده
Ricinoleic acid (RA; 12-hydroxy-cis-9-18:1) is the main fatty acid component of castor oil. Although a precursor for CLA synthesis in lactic acid bacteria, RA was found previously not to form CLA in ruminal digesta but to have some inhibitory properties. The present study was undertaken to evaluate the potential of RA to modulate ruminal biohydrogenation and methanogenesis. Ruminal digesta from 4 sheep receiving a mixed hay-concentrate diet was incubated in vitro with 0.167 g/L of linoleic acid (LA; cis-9,cis-12-18:2) or with a combination of LA and RA or LA and castor oil (LA, RA, and castor oil added to a final concentration of 0.167 g/L) in the presence and absence of lipase. The CLA rumenic acid (cis-9,trans-11-18:2) accumulated when either RA or castor oil and lipase was present. Vaccenic acid (VA; trans-11-18:1) also accumulated, and a decrease of the rate of production of stearic acid (SA; 18:0) was observed. When LA was incubated with castor oil in the absence of lipase, no effects on biohydrogenation were observed. Ricinoleic acid at 0.02 g/L did not affect growth of Butyrivibrio fibrisolvens but it inhibited growth of Butyrivibrio proteoclasticus. Butyrivibrio proteoclasticus but not B. fibrisolvens metabolized RA to 12-hydroxystearate. Linoleic acid metabolism by B. proteoclasticus appeared to be unaffected by RA addition whereas rumenic acid accumulation increased (P = 0.015 at 12 h) when RA was added. A 28% decrease (P = 0.004) in methane was obtained in 24 h in vitro incubations of diluted buffered ruminal fluid with added 0.2 g RA/L. There was no effect on the total concentration of VFA after 24 h as a result of RA addition, but the molar proportions of acetate and butyrate were decreased (P = 0.041 and P < 0.001, respectively) whereas that of propionate increased (P < 0.001). It was concluded that, at least in vitro, RA or the combination of castor oil and lipase inhibit biohydrogenation, causing the accumulation of rumenic acid and VA, with potential health benefits for ruminant products. The effect appeared to be mediated via an inhibitory effect on the biohydrogenating activity of B. proteoclasticus. An added environmental benefit could be a concomitant decrease in methane emissions. In vivo studies are now required to confirm the potential of these additives.
منابع مشابه
Effect of feeding dried distillers grains with solubles on ruminal biohydrogenation, intestinal fatty acid profile, and gut microbial diversity evaluated through DNA pyro-sequencing.
The objectives of this study were to evaluate the effect of dried distillers grains with solubles (DDGS) on ruminal biohydrogenation and duodenal flow of fatty acids, and to evaluate effects on the ruminal and duodenal microbial community using Roche 454 pyro-sequencing. Three crossbred steers (average BW 780 ± 137 kg) fitted with ruminal and duodenal cannulae were used in a 3-diet, 6-period cr...
متن کاملEffects of Heat Processing of Soybeans and Linseed on Ruminal Fatty Acid Biohydrogenation in situ
The aim of this study was to determine and compare in situ biohydrogenation (BH) fatty acids in three forms of soybeans and linseed (raw, extruded and roasted). Nylon bags (5×10 cm) containing 4 g of raw, extruded or roasted soybeans or raw, extruded or roasted linseed were incubated in the rumen of fistulated ewes for 4, 8, 12 and 24 hours. Results for linoleic acid (C18:2) showed tha...
متن کاملIsomers of conjugated linoleic acids are synthesized via different mechanisms in ruminal digesta and bacteria.
Digesta samples from the ovine rumen and pure ruminal bacteria were incubated with linoleic acid (LA) in deuterium oxide-containing buffer to investigate the mechanisms of the formation of conjugated linoleic acids (CLAs). Rumenic acid (RA; cis-9,trans-11-18:2), trans-9,trans-11-18:2, and trans-10,cis-12-18:2 were the major CLA intermediates formed from LA in ruminal digesta, with traces of tra...
متن کاملButylsoyamide protects soybean oil from ruminal biohydrogenation: effects of butylsoyamide on plasma fatty acids and nutrient digestion in sheep.
Based on previous results showing partial resistance of fatty acyl amides to ruminal biohydrogenation, butylsoyamide was added to sheep diets in an attempt to increase unsaturation of plasma fatty acids. Twelve wethers averaging 34 +/- 3.2 kg BW were randomly assigned to three diets containing either no added fat (control), 5% soybean oil, or 5% butylsoyamide. Dry matter intake was greater (P <...
متن کاملOccurrence of 2-aminoethylphosphonic acid in feeds, ruminal bacteria and duodenal digesta from defaunated sheep.
A quantitative method of analysis for 2-aminoethylphosphonic acid (AEP) was developed using reverse-phase HPLC. The detection limit for AEP was 15 nM, and the detector response (peak area) was linear from AEP levels up to 100 microM (R = .99). Mean recovery of AEP added to strained ruminal fluid from faunated sheep was 98.2%. When AEP was added to a fermentation mixture at a concentration of 22...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of animal science
دوره 90 13 شماره
صفحات -
تاریخ انتشار 2012